A convergent non-negative deconvolution algorithm with Tikhonov regularization

نویسندگان

  • Silvia Bonettini
  • Anastasia Cornelio
  • Yueyang Teng
  • Yaonan Zhang
  • Saima Ben Hadj
  • Laure Blanc-Féraud
  • Federica Porta
  • Luca Zanni
  • Christine De Mol
چکیده

We propose easy-to-implement algorithms to perform blind deconvolution of nonnegative images in the presence of noise of Poisson type. Alternate minimization of a regularized Kullback-Leibler cost function is achieved via multiplicative update rules. The scheme allows to prove convergence of the iterates to a stationary point of the cost function. Numerical examples are reported to demonstrate the feasibility of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization

In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...

متن کامل

Numerical analysis of Leray-Tikhonov deconvolution models of fluid motion

This report develops and studies a new family of NSE-regularizations, Tikhonov Leray Regularization with Time Relaxation Models. This new family of turbulence models is based on a modification (consistent with the large scales) of Tikhonov-Lavrentiev regularization. With this approach, we obtain an approximation of the unfiltered solution by one filtering step. We introduce the modified Tikhono...

متن کامل

PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions

Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...

متن کامل

A Sparse Spectral Deconvolution Algorithm for Non-cartesian Mrsi

Purpose: To minimize line shape distortions and spectral leakage artifacts in MR spectroscopic imaging. Methods: A spatially and spectrally regularized non-Cartesian MRSI algorithm that uses the line shape distortion priors, estimated from water reference data, to deconvolve the spectra is introduced. Sparse spectral regularization is used to minimize noise amplification associated with deconvo...

متن کامل

Inverse problems in spaces of measures

The ill-posed problem of solving linear equations in the space of vector-valued finite Radon measures with Hilbert-space data is considered. The well-posedness of regularization by minimizing the Tikhonov functional is established and further regularization properties are studied. In particular, the convergence rate of O(δ) for the Bregman distance under a source condition is obtained. Furtherm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013